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Introduction 
 Evolution by itself is a very interesting topic. I fixated the tree of life for quite some time, and 

thought to myself: “Wouldn’t it be cool to programmatically derive such a tree?” 

Fig 1: Tree of life 



 

 

Before taking 18.337 (6.338), I always shied away from computation-heavy tasks because of the 

time they took. Coming up with this tree, I knew will require a lot of computational power, data, and 

some theory behind evolution.  

I needed a way to circumvent the computational power barrier, given I did not have specialized 

computers for DNA analyses. During the course of this class, I was exposed to parallelism in a very fast 

novel language – Julia. My personal computer is a four core machine, and distributing the work to all the 

cores could spare me the need of a super computer, on a limited dataset.   

Next, I needed data. I surveyed the internet in search of organisms’ DNA. Fortunately, I could lay 

my hands on some DNA files, though in limited quantities. My dataset as of 12/14/2013 is hosted at 

http://web.mit.edu/moforj/Public/data. I could find only that of five mammals, but it was enough to, at 

the very least, build a working prototype. 

With data and Julia in hand, I had enough tools to start off. Before jumping into programming 

however, I needed to learn some of the theory underlying the tree of life. 

Unfortunately, that venture did not turned out so well, as the more I was digging in, the more 

extensive the reading was getting. Given my semester load, I had to abridge my research, after 

extracting a set of guidelines. With those guidelines, I could then apply some Artificial intelligence (AI) 

concepts to come up with an algorithm. I will be discussing these in greater details in subsequent 

sections.  

Now with data, Julia, and an algorithm in hand, I could officially kick off the project.  

  

http://web.mit.edu/moforj/Public/data


 

 

 

Algorithm & Method 

  

Background 

In my research to understand the concept behind the tree of life, my take-home was pretty 

simple.  

1. The DNA pattern of a node and that of its ancestor in the tree is very similar. 

2. It is not the number of individual bases (Adenine-A, Cytosine-C, Thymine-T, and Guanine-G) 

found in their DNA, that determines their similarity. Instead, I should look for groups of them 

(contiguous sequence in DNA), which match. The idea is, groups of bases together are 

responsible for controlling certain features of the organism. So, we could track those features 

as an organism evolves, by tracking those groups, or similar groups. 

 

In order to reduce the aforementioned two points into an algorithm, I needed an AI paradigm to 

simplify it all, and validate some assumptions, which could render my task computable.  

Occam’s razor is a principle of parsimony, which could be defined as thus:  

 In a situation which could be explained by several hypotheses, the most probable hypothesis is 

the one which requires the least number of assumptions. 

What this means in our context is: 

 The greater the similarity between two organisms’ DNA, the more likely those organisms are 

adjacent in the tree of life. Note that adjacency here could be vertically (parent to child) or horizontal 

(between children).  

       To illustrate this, consider this scenario:  

 Let AB = distance from organism A to organism B, 

 Let AC = distance from A to C 



 

 

 If AB < AC, then assuming the tree is rooted at A, and that there are only these 3 

organisms, B most probably evolved from A, and not from C. C then evolved from either 

A or B.  

o So if BC < AC, then C most probably evolved from B, and not from A. So the tree 

will look like: 

 

 

o On the other hand, if AC < BC, then C most probably evolved from A directly, but 

with more mutations than in B. Tree will look like: 

 

 

 

Algorithm 
 The formal statement could sound like: 

  An organism B, evolves from another organism A if organism A is the closest source to 

organism B. Mathematically, 

 B evolves from A ⇒ ∀X ∈ organisms,   ⃗⃗⃗⃗  ⃗    ⃗⃗⃗⃗  ⃗  1 

                                                           
1
 Note that this is not an iff relationship ⇔  as we do not know for a fact that evolution/mutations obeys a pattern 
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 The above equation reduces to a shortest path in a graph problem. Taking a step back, the 

shortest path approach makes sense because we are working on the bases of Occam’s razor, which by 

itself could be thought of as a shortest path method of reasoning. 

 To find the shortest path, we will use the famous Dijkstra’s shortest path algorithm, whose 

implementation I will discuss subsequently. 

 Lastly, we need a distance metric. Because we need to consider bases (A, T, C & G) in groups, we 

need to use a window sliding technique, in which every window represents a group of continuous bases. 

The most efficient algorithm I know for this task is Rolling Hash by Robin-Karp.  

I did not dig deep enough to find the ideal window size, so, for this experiment, I will make 

window size a variable, so we can vary it later when we have more information on the setup.  

 

Method 

 The first task we need to perform is to actually read the DNA files, in a manner which will make 

distance computation easy.  It is important to note that, we did not store all the DNA file into memory, 

as that would have been very space consuming, especially as we really do not need the DNA sequence 

itself. So, I needed a way to read the file, and just extract the useful information (compressed) out of it. 

 In that light, I applied Rolling hash right on the input stream, and stored the generated table. 

Found below is my Julia implementation of rolling hash. 

The codes purpose is to generate a table (map) with: 

 keys = hash of a DNA sequence of length window_size 

 value = number of time that DNA sequence occurs in the strand. 

 

 

 

 

 

 



 

 

Rolling Hash Implementation. 

 

## Uses Robin-Karp's Rolling Hash. 

## Complexity O(N), N = number of chars in DNA file. 

@everywhere function generate_lookup_table_faster(location::String, window_size::Int64 = 

10) 

    # mapping of k-sequence hash to number of occurrences. 

    lookup_table = Dict{Uint64,Int64}() 

 

    # IOStream of reference .fa DNA file. 

    file = open(location,"r"); 

 

    # Vector of size window_size, used to slide across DNA strand. 

    container = Char[] 

 

    # Char's to exclude. 

    exclude = ['\n' 'N']; 

 

    ## Defining some constants 

    PRIME_BASE::Uint64 = unsigned(5); 

    PRIME_MOD::Uint64 = unsigned(1000000007); 

    current_hash = 0; 

 

    # While we are not at the end of the file. 

    while !eof(file) 

 c = read(file,Char); 

 

 if !in(c,exclude) 

 

     # if the container is NOT full, add the next char in it. 

     if (length(container) < window_size) 

         push!(container,c); 

         current_hash = (current_hash*PRIME_BASE + int(c)) % PRIME_MOD; 

     end 

 

     # if the container is FULL, compute hash, and remove first element. 

     if (length(container) == window_size) 

         if haskey(lookup_table,current_hash) 

                    # Augment tally if it existed already. 

                    lookup_table[current_hash]+=1; 

                else 

       # Initialize tally at 1. 

       lookup_table[current_hash] = 1; 

   end 

 

  # Update hash and remove first element (Slide the window). 

  current_hash = (current_hash - 

int(container[1])*(PRIME_BASE^(window_size-1)) ) % PRIME_MOD; 

  container = container[2:end]; 

     end 

 end 

    end 

    return lookup_table 

end



 

 

Rolling Hash Analysis 

As indicated, the algorithm has 

 O(N) runtime complexity, where N = number of bases in the DNA file.  

 O(             ) space complexity, where k = window_size.  

o    because, there are 4 bases, and given a window size of k, there will be a maximum 

of    possible keys in the table. 

o 2*   because, for every key, we will need an associated value. 

o min(2*  , N) because, N might be smaller than 2*  , in which case, we have a much 

tighter upper bound on the space, as we will not use more than N.  

At this point, we have successfully efficiently extracted the relevant information about the DNA strand, 

into a very fast data structure, which should enable the rest of the program to run pretty quickly. 

 The next step, after building a DNA table lookup, is to compute a distance metric, given any two 

such tables.  

 The logic used here was a straight-forward difference in frequency, accumulation. That is, 

  The distance between 2 look-up tables, is the sum of the differences in values for every 

key from both tables. If a key is not in the other table, then we assume a zero for that key. 

Mathematically, 

  

        ∑ |  [   ]   [   ] |

       ⋃     

   

 

 [   ]                   [   ]  

 [   ]                   [   ]  

The Julia implementation I have takes: 

 O( size(A) + size(B) ) runtime complexity, given you will have to visit every key in both maps, but 

 O(1) space complexity. 

Now that we have a distance metric, we need Dijkstra’s shortest path algorithm. The following is my 

implementation of Dijkstra.



 

 

Dijkstra’s Shortest Path Implementation 
## Returns the shortest path between any 2 nodes, or {} if target doesn't exist. 

function dijkstra_shortest_path(graph::Dict{},start::String,target::String) 

    # Sanity checks 

    if !haskey(graph,start) || !haskey(graph,target) 

            println("Invalid request"); 

            return () 

    end 

    # Required data structures 

    pq = PriorityQueue(); 

    parent = Dict(); 

    dist = Dict(); 

    visited = Set(); 

    generic_start_node = "Cell"; 

    current = start; 

    dist[start] = 0; 

    parent[start] = generic_start_node; 

 

    # Main loop. 

    while current!=target 

        # Loop only over instances with out-edges. 

        if haskey(graph,current) 

 

            # Avoid inifinite loop as this may be undirected graph. 

            push!(visited,current); 

            # Filter for only nodes not visited already. 

            for node in filter(n->!in(n,visited),[x for x in keys(graph[current])]) 

                distance = dist[current] + graph[current][node]; 

                # Condition for relaxation, 

                # Relax iff we have found a shorter path. 

                # Consider only 1 such paths if 2 'shortest' paths 

                # have the same distance. 

                if !(haskey(dist,node) && distance >= dist[node]) 

                    dist[node] = distance; 

                    parent[node] = current; 

                end 

                # Update the priority queue. 

                pq[node] = dist[node]; 

            end 

       end 

       # Move to the next shortest path so far! 

       current = dequeue!(pq); 

    end 

    # Reconstructing the path 

    path = {}; 

    if current==target 

        path_distances = {}; 

        # Backtrack, until the generic_start_node 

        while current!=generic_start_node; 

            push!(path,current) 

            push!(path_distances,dist[current]) 

            current = parent[current]; 

        end 

        # Reverse the path, and return it. 

        reverse!(path); 

        reverse!(path_distances); 

     end 

    return path,path_distances; 



 

 

 

Dijsktra Analysis 

The above implementation has: 

 O(| |    | |  | |) runtime complexity (V = number of vertices, E = number of edges), and 

 O(|V|) Space complexity ( for pq ). 

At this point, we have all the tools we need for the computation. 

We now need to put everything together. First, let’s try a serialized approach and see the bottle neck: 

function compute_edges_serial(dna_files_dir,win::Int64=10) 

 

    # Getting absolute refernces. 

    dna_files = readdir(dna_files_dir); 

    fpath(file) = "$(dna_files_dir)\\$(file)" 

 

    # Initializing graph 

    graph = Dict(); 

    n = length(dna_files); 

    for i in 1:n 

        graph[dna_files[i]] = Dict(); 

    end 

 

    # Main Loop. 

    start_time = time(); 

    tables = Dict(); 

    for i in 1:n 

        if !haskey(tables,dna_files[i]) 

                

tables[dna_files[i]]=generate_lookup_table_fast(fpath(dna_files[i]),wi

n); 

        end 

        t1 = tables[dna_files[i]]; 

        for j in i+1:n 

                if !haskey(tables,dna_files[j]) 

                        

tables[dna_files[j]]=generate_lookup_table_fast(fpath(dna_files[j]),wi

n); 

                end 

                t2 = tables[dna_files[j]]; 

                graph[dna_files[i]][dna_files[j]] = 

graph[dna_files[j]][dna_files[i]] = get_distance(t1,t2); 

        end 

    end 

    println("Total time: ",time() - start_time); 

    return graph 

end 



 

 

The bottle neck in the above piece of code is the for-loop which contains 

generate_lookup_table_faster. Even though that function takes O(N) which is the best complexity, we 

are still executing all that work in serial, while other cores are just idling.  

 A way to fix that could be, by sending off that heavy computation to separate cores, and 

grabbing the result when we need it. This is what the following implementation achieves.  

function compute_edges_parallel(dna_files_dir,win::Int64=10) 

    # Getting absolute refernces. 

    dna_files = readdir(dna_files_dir); 

    fpath(file) = "$(dna_files_dir)\\$(file)" 

    # Making sure we have enough processors 

    n = length(dna_files); 

    diff = nworkers() - n; 

    if diff <= 0 

            warn("Not enough workers!!"); 

    end 

    # Initializing graph 

    graph = Dict(); 

    for i in 1:n 

            graph[dna_files[i]] = Dict(); 

    end 

    # Main Loop. 

    references = [(@spawn 

(generate_lookup_table_faster(fpath(dna_files[i]),win))) for i=1:n] 

    tables = Dict(); 

    for i in 1:n 

        if !haskey(tables,dna_files[i]) 

            tables[dna_files[i]]=fetch(references[i]); 

        end 

        t1 = tables[dna_files[i]]; 

        for j in i+1:n 

            if !haskey(tables,dna_files[j]) 

                tables[dna_files[j]]=fetch(references[j]); 

            end 

            t2 = tables[dna_files[j]]; 

            graph[dna_files[i]][dna_files[j]] = 

graph[dna_files[j]][dna_files[i]] = get_distance(t1,t2); 

        end 

    end 

    return graph 

end 

  



 

 

Serial Code analysis 

Runtime: 

  ∑          

                  

 

 

 

 Space:  

   

   ∑                     

               

 

  

Parallel Code analysis 

 Runtime: 

       [                           ]  

 Space: 

  2 * space complexity of serial version – this is because, when we sent over the work to 

separate cores, we needed to copy the table back to the main core to perform the distance 

computation. As a result, we end up with copies of each table, though we gain enormously on runtime. 

 

At this point, we have all the functions we need.  

  



 

 

Results 

In my current data set, I have solely a group of mammals. True this venture would have been 

much more convincing if I had a lot more animals from different kingdoms, but here is what I have 

currently. 

 

Evol Results 

NB:  

 “fx.fa” is the DNA_file of organism x. 

 show_evol shows the evolutionary path from organism A to B. 

 At the end of the evolutionary path, is found the distance between the organism A and organism 

B.  

In [8]: 

show_evol("fdog.fa","fchimp.fa") 

fdog.fa -> fchimp.fa @ 14446647 

In [9]: 

show_evol("fmaternal.fa","fpaternal.fa") 

fmaternal.fa -> fpaternal.fa @ 442718 

In [10]: 

show_evol("fmaternal.fa","fchimp.fa") 

fmaternal.fa -> fchimp.fa @ 2911556 

In [11]: 

show_evol("fpaternal.fa","fchimp.fa") 

fpaternal.fa -> fchimp.fa @ 2911214 

 

 

 



 

 

The most noticeable point to notice here is, given only the data set at my disposal, these results 

make sense.  

The difference between a female human (“fmaternal.fa”) and a male human (“fpaternal.fa”) is 

an order of magnitude less than the difference between a chimp and a human, which is itself an order of 

magnitude less than the difference between a chimp and a dog (which belongs to Canivora order, while 

chimp and humans are in the same order - Primates). 

Serial vs Parallel 

 

Serial Parallel 

141.53399991989136s 72.4539999961853s 

  

It takes about 69s to fully process “fmouse.fa” which is the largest file - hence the 72.45 seconds 

of the parallel computation. 

 

Conclusion 

 All in all, I wish I had more data, for different species in different kingdoms, to be able to 

produce that tree. Unfortunately, I could not find them. My hope is to continue this project in Julia 

sometime in the future, when I have much more data, and have mastered some more of the theories 

behind evolution. 

 Nonetheless, this project was a lot of fun, and I got hands-on experience with Julia, and 

parallelism.  


